Discontinuous Galerkin methods for the Stokes equations using divergence-free approximations

نویسندگان

  • A. Montlaur
  • A. Huerta
چکیده

A Discontinuous Galerkin (DG) method with solenoidal approximation for the simulation of incompressible flow is proposed. It is applied to the solution of the Stokes equations. The Interior Penalty Method is employed to construct the DG weak form. For every element, the approximation space for the velocity field is decomposed as direct sum of a solenoidal space and an irrotational space. This allows to split the DG weak form in two uncoupled problems: the first one solves for the velocity and the hybrid pressure (pressure along the mesh edges) and the second one allows the computation of the pressure in the element interior. Furthermore, the introduction of an extra penalty term leads to an alternative DG formulation for the computation of solenoidal velocities with no presence of pressure terms. Pressure can then be computed as a post-process of the velocity solution. Numerical examples demonstrate the applicability of the proposed methodologies. Copyright c © 2007 John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Globally Divergence-free Weak Galerkin Methods for Stokes Equations

This paper proposes and analyzes a class of robust globally divergence-free weak Galerkin (WG) finite element methods for Stokes equations. The new methods use the Pk/Pk−1 (k ≥ 1) discontinuous finite element combination for velocity and pressure in the interior of elements, and piecewise Pl/Pk (l = k − 1, k) for the trace approximations of the velocity and pressure on the inter-element boundar...

متن کامل

Energy norm a-posteriori error estimation for divergence-free discontinuous Galerkin approximations of the Navier-Stokes equations

We develop the energy norm a-posteriori error analysis of exactly divergence-free discontinuous RTk/Qk Galerkin methods for the incompressible Navier-Stokes equations with small data. We derive upper and local lower bounds for the velocity-pressure error measured in terms of the natural energy norm of the discretization. Numerical examples illustrate the performance of the error estimator withi...

متن کامل

A Simple Preconditioner for a Discontinuous Galerkin Method for the Stokes Problem

In this paper we construct Discontinuous Galerkin approximations of the Stokes problem where the velocity field is H(div,Ω)-conforming. This implies that the velocity solution is divergence-free in the whole domain. This property can be exploited to design a simple and effective preconditioner for the final linear system.

متن کامل

A Note on Discontinuous Galerkin Divergence-free Solutions of the Navier-Stokes Equations

We present a class of discontinuous Galerkin methods for the incompressible Navier-Stokes equations yielding exactly divergence-free solutions. Exact incompressibility is achieved by using divergence-conforming velocity spaces for the approximation of the velocities. The resulting methods are locally conservative, energy-stable, and optimally convergent. We present a set of numerical tests that...

متن کامل

High order exactly divergence-free Hybrid Discontinuous Galerkin Methods for unsteady incompressible flows

In this paper we present an efficient discretization method for the solution of the unsteady incompressible Navier-Stokes equations based on a high order (Hybrid) Discontinuous Galerkin formulation. The crucial component for the efficiency of the discretization method is the disctinction between stiff linear parts and less stiff non-linear parts with respect to their temporal and spatial treatm...

متن کامل

An Equal-Order DG Method for the Incompressible Navier-Stokes Equations

We introduce and analyze a discontinuous Galerkin method for the incompressible Navier-Stokes equations that is based on finite element spaces of the same polynomial order for the approximation of the velocity and the pressure. Stability of this equal-order approach is ensured by a pressure stabilization term. A simple element-by-element postprocessing procedure is used to provide globally dive...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007